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LETTER TO THE EDITOR 

Bound excitons in quantum spin-1 chains with strong 
planar anisotropy 

N Papanicolaout$ and P Spathis$$ 
t Department of Physics, University of Crete and Research Centre of Crete, Iraklion, 
Crete 
0 Institute of Electronic Structure and Laser, Research Centre of Crete, Iraklion, Crete 

Received 13 June 1989 

Abstract. A strong-coupling expansion is used to study quantum spin-1 chains with strong 
planar anisotropy. In addition to providing accurate analytical results for the dispersion and 
intensity of a doubly degenerate excitonic mode, we find that an exciton-antiexciton bound 
state is formed that could be observed through the two-point longitudinal correlation func- 
tion. The relevance of these results for the interpretation of neutron scattering experiments 
on CsFeC13 and CsFeBr, is discussed briefly. 

We consider the class of quantum spin-1 chains described by the Hamiltonian 

H = A H o  - JV Ho = 2 (S:)2 V =  (SX,SX,+l + S{SY,+1 + 6SiS:+1) (1) 

which encompasses a number of quasi-one-dimensional magnetic systems of current 
interest. Throughout this work we will assume the coefficient A of the single-site ani- 
sotropy to be positive. Concerning the choice of J and 6 we note that the spectrum of 
(1) is invariant under the transformation ( J ,  6)+ (-J, -6). This invariance of the 
spectrum follows from the fact that the transformation SX, + -SX, and Sa + --Si, at 
alternate sites, preserves the spin commutation relations while it changes the sign in 
front of SX,S;+ + SY,S{+, . Therefore one can always assume the exchange constant J to 
be positive. Then the isotropic ferromagnet corresponds to 6 = 1 and the anti- 
ferromagnet to 6 = -1. However, in the latter case, a sign alternation at consecutive 
sites should be incorporated into the two-point transverse correlation function, which 
amounts to a shift of the Brillouin zone according to k + k + n;  no such shift is necessary 
in the longitudinal correlation function. 

There exist two distinct coupling regimes controlled by the dimensionless coupling 
constant a = A/J. Here we shall be interested in strong anisotropies, i.e. a S 1. Examples 
of spin-1 chains realised in this region are provided by CsFeC1, and CsFeBr3 and are 
described by Hamiltonian (1) with ferromagnetic (6 = 1) and antiferromagnetic 
(6 = - 1) exchange interactions, respectively. The corresponding values of a are thought 
to be a = 4 and a = 4.7 [ 1, 21. A small inter-chain coupling is also present in the above 
compounds but will be neglected in this work for simplicity. 
$ Also at the Department of Physics, Washington University, St Louis, MO 63130, USA. 
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The main features of this problem become transparent in the limit a + where the 
ground state is such that the azimuthal spin vanishes at every site. Low-lying excited 
states are then constructed by exciting one spin to an azimuthal value m = tl. If A is 
the total number of sites, there exist A distinct states with m = 1, which will be called 
excitons (e), and A states with m = -1, to be referred to as antiexcitons ( E ) .  All these 
states are degenerate in the limit a + x with energy equal to A. However the degeneracy 
is removed to a large extent at finite a leading to two identical bands (e and E )  charac- 
terised by definite magnetisation (m = tl) and parametrised as usual by the crystal 
momentum k. 

The results of an approximate semiclassical theory based on a 1/n expansion [3,4] 
are summarised by the two-point transverse dynamic correlation function 

where the repeated index p is summed over x and y ,  wk is the dispersion of the 
(anti)excitonic mode, and the amplitudefk determines the corresponding intensity; the 
factor of 2 in 2fk indicates that excitons and antiexcitons contribute with equal intensity. 
The result of (2) was derived also by Lindgard [ 5 ] ,  using some sort of random phase 
approximation, and was recently used for the analysis of neutron scattering data from 
CsFeBr, [2]. Actually, Lindgard’s result is more general in that it accounts for finite 
temperature and a small inter-chain coupling. 

For sufficiently large a, the excitonic dispersion develops a mass gap that vanishes at 
a = 4 while it becomes imaginary for a < 4. Thus a phase transition is predicted at the 
critical coupling a, = 4 below which the doubly degenerate excitonic mode bifurcates 
into the usual magnon and a massive resonance describing in-plane fluctuations [3, 41. 
An immediate concern is the accuracy of (2) for the intermediate anisotropies of actual 
interest. A related question is whether or not the predicted critical coupling is accurate. 
In fact, as is often the case with semiclassical theories, the 1/n expansion does not predict 
the correct critical coupling in this problem. Numerical simulations indicate that the true 
critical coupling lies in the region a, - 1. Therefore, for intermediate anisotropies, 
detailed numerical predictions based on (2) should be interpreted with caution, even 
though the overall qualitative picture is reasonable. 

To remedy this situation we have carried out an independent calculation based on a 
direct strong-coupling expansion; that is, an expansion in inverse powers of a. A fourth- 
order calculation of the ground-state energy has already been reported in [4] and will 
not be repeated here. Instead we concentrate on quantities of immediate practical 
interest, Hence a third-order calculation of the excitonic dispersion yields 

(3) 
wk =A[I  + W l / U  U z / U 2  U 3 / U 3  + * * ]  

~1 = -2 COS k 

The corresponding intensity may be inferred from the amplitude f k  which has been 
calculated to second order with the result 

m2 = 1 + 2sin’k w 3  = i(1 + 8 sin’k) cos k - 26 sin2k. 

fk = 1 + 2 COS k / a  + (12 cos2k - 26 COS k - 7) /2a2  + . . . . (4) 
For a + 4, (3) and (4) coincide with the semiclassical results of (2). However, significant 
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Figure 1. Excitonic dispersion for an intermediate 
anisotropy (a = 5). The dispersion is plotted for 
ferromagnetic (FM) and antiferromagnetic (AFM) 
exchange interaction. The full curves depict the 
result of the strong-coupling expansion, (3), and 
the broken curves correspond to the semiclassical 
result of (2). 0 -n 2 k 0 

discrepancies occur for intermediate anisotropies. In figure 1 we compare the dispersion 
(3) with the semiclassical result ( 2 )  for a typical intermediate coupling a = 5. The 
dispersion is depicted for both ferromagnetic (6 = 1) and antiferromagnetic (6 = - 1) 
exchange interactions, having incorporated the shift k +  k + n in the latter case. 

One would think that the observed discrepancy would be due to the fact that ( 2 )  is 
only the leading approximation within a systematic 1/n expansion. Indeed, including 
1/n corrections in (2) would improve its accuracy for strong anisotropies [4]. Never- 
theless these corrections become increasingly singular in the region a = 4, indicating 
that the semiclassical critical coupling a, = 4 is actually inaccurate. To simplify the 
picture we consider the mass gap A of the excitonic mode calculated by setting k = 0 in 
(3 ) :  

A = A[I - 2/a + i / a *  + 1/2a3 + . . . I .  ( 5 )  

For a = 4, the last term in ( 5 )  contributes about one per cent of the total value, which 
makes it reasonable to assume that the strong-coupling series is reliable in this region of 
couplings. Applied for a = 4, ( 5 )  gives A = 0.57A, in disagreement with the semiclassical 
prediction of a vanishing mass gap. And, although ( 5 )  is too short a series to locate the 
critical coupling, it is consistent with a, = 1. Pushing the calculation to high orders would 
help locate the true critical coupling and elucidate the nature of the phase transition. 
The behaviour of this series is expected to be especially interesting in connection with 
the anticipated Haldane gap at 6 = - 1 and a = 0. Note that the first few terms displayed 
in ( 5 )  are &independent; but this situation will change in higher-order terms. 

The practical outcome of the preceding discussion is that neutron scattering data 
should be re-analysed in the light of ( 3 )  and (4), which are expected to provide an 
accurate description of the excitonicmode for strong as well as intermediate anisotropies. 
Here we consider briefly the excitonic dispersion of CsFeBr3 for which [2] assigns the 
parameters A = 29.8 K, J = 6.4 K ( a  = A/J = 4.7) extracted essentially from a fit of the 
data against the semiclasical dispersion of ( 2 ) .  We thus use ( 2 )  with the above parameters 
as input ‘experimental’ data and perform a least-squares fit to the excitonic dispersion 
of ( 3 ) .  The resulting new parameters A = 23 K, J = 7 K (a  = A / ]  = 3.3) are found to be 
in substantial disagreement with the assignment of [2]. The most notable feature of the 
new parameters is that the value of a is pushed below the semiclassical critical coupling 
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a, = 4, where ( 2 )  is no longer valid. A more careful analysis should include a discussion 
of the intensity given in (4) and consider the effect of a small inter-chain coupling. 

Having thus completed the description of the excitonic mode, we turn our attention 
to a second (mirror) mode observed through out-of-plane fluctuations in CsFeBr3 [2].  
A theoretical explanation of this mode has not been available [6] .  In fact, a semiclassical 
calculation analogous to that leading to ( 2 )  would yield an expression for the two-point 
longitudinal correlation function (St, ( t )S ; )  that is dominated by a dull exciton-anti- 
exciton continuum and provides no indication for a sharp mode in this channel. Yet is is 
conceivable that such a mode exists in the form of an exciton-antiexciton bound state 
and is missed by the semiclassical theory for more or less the same reason that the 
familiar Holstein-Primakoff expansion does not yield direct information for the two- 
magnon bound states known to exist in ferromagnets. However, this analogy with two- 
magnon states is somewhat misleading because two-body states in this problem come in 
three varieties: namely, exciton-exciton (ee) pairs with magnetisation m = 2; anti- 
exciton-antiexciton ( E E )  pairs with m = -2; and exciton-antiexciton (ee) pairs with m = 
0. The ee and E E  states share with two-magnon states the property that they may be 
observed only through four-point correlations. On the other hand, ee states contribute 
directly to the two-point longitudinal correlation function, because they carry the same 
magnetisation with the ground state (m = 0), and should be accessible to inelastic 
neutron scattering. 

In order to ascertain the existence of bound states, we resort again to the strong- 
coupling expansion. First we consider the ee sector; the discussion of the E E  sector is 
identical, whereas the results for e5 states will be inferred later by simple substitutions. 
Now, in the limit a-+ 00, the ee sector consists of states of the form In,, n2) where the 
azimuthal spin is equal to +l  at sites n1 and n2 and vanishes at all other sites. Clearly, 
in1, n2) = In2, n l )  and n1 # n2, so there exist A(A - 1)/2 ee states all with energy 2A. 
This degeneracy cannot be completely removed by sorting out states with definite crystal 
momentum. Hence we must perform degenerate perturbation theory which, to leading 
order, amounts to diagonalising the matrix (n;  , n; /V/nl ,  nz) where Vis the exchange 
operator defined in (1). The action of Von In,, n2)  is given by 

Vlnl, n2) = In1 - 1 , 1 2 2 )  + inl + 1, n2) + In1, n2 - 1) + lnl, n2 + 1) 

Vjn, n + 1) = 6 / n ,  n + 1) + In - 1, n + 1) + In, n + 2). 

(6a) 

(6b)  

when n1 and n2 are not neighbours, and 

In the right-hand sides of (6a) and (6b)  we have neglected states that do not belong to 
the manifold In,, n2),  as is appropriate to leading order. 

The main point of this calculation is that the operator V defined by ( 6 )  can be 
diagonalised by a Bethe ansatz, in close analogy with calculations of two-magnon states 
in anisotropic chains of arbitrary spin [ 7 , 8 ] .  Specifically the eigenvalue problem 

C,,,,, = exp i (klnl  + k2n2 + q / 2 )  + exp i(k1n2 + k2nl  - q / 2 )  
f8) 
\ ,  

E =  COS kl + COS k2) 

provided that the wavenumbers k l ,  k2 and the phase shift 9 are related by 

cot ( q / 2 )  = 6 sin[(kl - k2) /2] /{2  cos[(kl + k 2 ) / 2 ]  - 6 cos[(kl - k 2 ) / 2 ] } .  (9) 
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Figure 2. Dispersion of the exciton-antiexciton 
bound state, (12), for a = 5.  The bound state 
emerges below the continuum for the 
antiferromagnet (full curve, S = -1) and above 
the continuum for the ferromagnet (dotted curve, 

0 . 5 1 1  -n 0 

k 6 = 1). 

This information, together with the periodic boundary conditions Cn,,nZ = C,,, , ,  +,, , 
suffices for a complete description of the ee or i5E sector along the lines of [7,8]. 

Thus the leading approximation to the energy of an ee or S S  pair is given by 
Q k l k 2  = A(2 - € / U ) ,  i.e. 

Q k l k z  = 2A[1 - (l/U)(COS kl + COS kz)]. (10) 

The majority of solutions correspond to real wave number k l  and k2for which (10) yields 
a two-body continuum with boundaries given by $2; = 2A [ l  k (2/a) cos(k/2)] where 
k = k l  + k2 is the total crystal momentum. We also find solutions for complex k l  and k2 
leading to ee and Si5 bound states with dispersion 

Qr = 522 = 2A{1 - (1/~)[(6/2)  + (2/6) c0s2(k/2)]} 2 cos-1(6/2) s / k /  s ld. 
(11) 

This dispersion describes a stable mode, for momenta near the zone boundary, which 
merges smoothly with the continuum at Ikl = 2 cos-'(6/2). Note that the bound state is 
stable throughout the zone for 161 2 2, whereas no such state is formed in the XYlimit 
6 = 0 .  

The e5 sector is spanned by states of the form Inl, f i2)  where the bar indicates that 
the azimuthal spin at site n2 is equal to -1. The study of this sector appears to be 
complicated by the fact that In1, It2) is not symmetric under exchange of nl  and n2. 
However, it is not difficult to see that the (anti)symmetric combinations In1, n2)* = 
Inl, ii2) ? In2, fil) both satisfy (6) with the simple substitution 6 --j - 6. Therefore aBethe 
ansatz may be used in this case, too. The boundaries of the eE continuum are the same 
as those of (10) and an ei5 bound state is formed with dispersion. 

Qp = 2A{1 + (l/a)[(6/2) + (2/6) cos2(k/2)]} 2cos-'(6/2) c /kl c ld. (12) 
This dispersion is plotted in figure 2 for a = 5. It is seen that the bound state emerges 
above the continuum in the ferromagnet (6 = 1) and below the continuum in the 
antiferromagnet (6 = - 1). 

The calculated eE: bound state appears as a sharp mode in the two-point longitudinal 
dynamiccorrelation function Gz*( k ,  w )  and is thus tentatively identified with the 'mirror' 
mode picked up by out-of-plane fluctuations in the experiment of [2]. A convincing 
identification would require an explicit calculation of Gzz( k ,  w). This calculation is 
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actually possible, by exploiting the detailed structure of the Bethe wavefunctions of (6)- 
(9), but will not be given in this short communication. However, the general features of 
the anticipated result may be envisaged by a simple inspection of figure 2. For values of 
k near the zone boundary, a sharp mode will appear at o = 52F separated from the 
contribution of the e-E continuum by a finite frequency gap. As k approaches the 
zone centre, this gap tends to zero because the bound state gradually merges with the 
continuum. 

Finally one should keep in mind that (12) is only the leading approximation of the 
bound-state dispersion within a systematic strong-coupling expansion. Therefore a 
consistent comparison of (12) with experiment would require that the parameters of the 
model be extracted from an excitonic dispersion calculated with comparable accuracy, 
i.e. one should use ok = A(l  - 2 cos k / a )  instead of the more accurate expression given 
in (3). Of course, a more satisfactory procedure would be to calculate higher-order 
corrections to (12), but those appear difficult to obtain because of the inherent degener- 
ate perturbation theory. We hope to return to some of these questions in a future more 
detailed publication. 

We are grateful to M Steiner for valuable correspondence concerning the experimental 
work of [l, 23 and H Neuberger for some theoretical suggestions. This work was sup- 
ported in part by the US Department of Energy and by an EEC grant (ESPRIT-3041). 
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